

Hybrid gravimetry and water storage changes In the critical zone

- Hinderer¹, J., Chaffaut¹, Q., Hector², B., Masson, F.¹, Viville ³, D., Pierret ³, M.-C., & Bernard ¹, J.-D. ¹Institut de Physique du Globe de Strasbourg France ² IGE Grenoble France
- ³ LHYGES, France

Outline

- Introduction to hybrid gravimetry
- An example of application in hydrology: the Ara catchment in Benin
- Ongoing projects within CRITEX: the Strengbach catchment (Vosges) the Fontaine du Vaucluse karst system

Spatial scales of the Critical Zone

Gravimetry

<u>Ground</u>			<u>Satellite</u>
absolute	relative		
	spring	superconductin	ng
FG5	CG5	OSG	GRACE
2 μ gal 5 cm H ₂ 0	<mark>precision</mark> 2 μgal 5 cm H ₂ 0	0.1 μgal 2.5 mm H ₂ 0	2 μgal 5 cm H ₂ 0
No drift /transportable	<u>advantage</u> Easy to move	High precision continuous/low drift	Spatial coverage
Maintenance (laser, superspring)	<u>disadvantage</u> Precision/drift	Maintenance (cryogenics)	Low sampling

What is hybrid gravimetry?

One example from GHYRAF (Gravity and Hydrology in Africa) ANR project

Strong north-south climatic gradient

🗖 🖵 Djougou Benin (West Africa)

Hybrid gravimetry: AG + RG + SG + GRACE

Precise positionning: GPS

Hydrological sensors: neutron probes, piezometers, soil humidity

Hinderer et al. JoG 2009, PAGEOPH 2011; Hector et al. GJI 2013, JoG 2014, WRR 2015

Djougou Bénin AMMA- CATCH

Water table level, NP storage and rain

Gravity changes: observations versus local hydrological model

black and blue curves: gravity modeling of hydrological effect with different soil humidity and water table changes (use of resistivity mapping and MRS soundings) only with AG

Ground (SG + AG)and space (GRACE) gravity versus hydrological model

Installation of SG-060

with SG and AG

Micro-gravity surveys

contrasted years

low uncertainties (< 2.5 μgal) on station gravity determinations

Seasonal amplitude of water storage changes

Hybrid: with SG, AG and RG

On-going CRITEX projects in hydro-gravimetry

- Available equipments:
- ✓ 3 superconducting gravimeters GWR iGrav
- ✓ 1 relative gravimeter Scintrex CG5
- Validation of iGravs at Strasbourg Observatory since installation in July 2016
 see poster Portier et al.
- First iGrav installation planned in may-june 2017 at Strengbach watershed
- Second iGrav installation planned in fall 2017 at Fontaine de Vaucluse karst system
- Third iGrav to be used in a pumping test experiment in Brittany (spring 2018)

Our strategy for studying the water storage changes in the Strengbach catchment (Vosges mountains)

Use of hybrid gravimetry to investigate WSC:

- Continuous monitoring with SG (iGrav) at summital base station
- Regular measurements at base station with AG (FG5)
- Repetition of micro-gravity network with RG (Scintrex CG5) on 17 stations within the catchment including 6 boreholes/piezometers

Complemented by:

- Monitoring of water level in several boreholes and piezometers
- Monitoring of soil water content with different probes (TDR, optical fiber, etc..)

more in Pierret et al. talk + poster by Chaffaut et al.

- To improve the conceptual model of a topographically complex mountain catchment
- To reach better constraints in the hydrological inversion procedure
- To reduce uncertainty in water storage dynamics with respect to the classical case (using only streamflow data)

Simplified schematic representation of the hydrological model (Piccolroaz et al. 2015) + fractures with enhanced fluid circulation ...

Fontaine de Vaucluse: a new CRITEX experiment based on differential gravity

Summary:

- hybrid gravimetry (AG + SG + RG) leads to valuable information on water storage changes in time and space
- combined with other geophysical and hydrological observations helps to understand the hydrological behaviour of a catchment
- after successful validation tests in Strasbourg the CRITEX superconducting gravimeters will be deployed soon on two selected sites (Strengbach and LSBB) in a fully hybrid gravimetry approach

Thank you for your attention!