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Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution
(PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes
parametric models like Cole–Cole and many others, but remains tricky to invert since this inverse problem is
ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on
basis of generalized Cole–Cole relaxation elements instead of the classical Debye basis) and to use the L-curve
approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply
our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of
converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the
characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken
into account in the model. The code is provided as an open Matlab source as a supplementary file associated with
this paper.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In physics and electrochemistry, it is usual to analyze polarization
phenomena by representing transfer functions in the frequency domain
(e.g. Barsoukov andMacdonald, 2005).More recently in geophysics, spec-
tral impedancemeters have been used to explore the ground response in
both the time and frequency domains. For frequency-domain induced
polarization, the frequency range is typically [10−2 ± 1,103± 2] Hz.
The data are generally log-equally sampled and provided in terms of
resistivity or conductivity, with amplitude and phase or real part and
imaginary parts (i.e., in-phase and quadrature components). These repre-
sentations correspond to the Bode and Nyquist diagrams, respectively.

Beside the traditional few parameters used in induced polarization
(like the chargeability in time-domain induced polarization or the
“frequency effect”, Telford and Sheriff, 1990), more sophisticated
models involve the determination of a set of model parameters given
a particular analytical function such as the Cole–Cole, Warburg, Cole–
Davidson, or Havriliak–Negami distributions (see many other models
in Dias, 2000; Hilfer, 2002). A number of authors have addressed this
kind of inversion, for instance Ghorbani et al. (2007), Chen et al.
rie, 4 place Jussieu, 75252 Paris
(2008), Miranda and Lopez-Rivera (2008) for the function. Other
recent works do exist in the time domain, like the one by Tarasov and
Titov (2007), where the authors address the inversion of the model
parameters entering the Cole–Cole model.

A recent perspective for interpretating spectral induced polarization
data consists in determining the Relaxation Time Distribution (RTD),
which can be derived from the complex spectra of impedance or admit-
tance. For instance Nordsiek andWeller (2008) used a Debye decompo-
sition of the spectra to determine a distribution of relaxation times. In
this context, it is generally assumed that the observed spectra result
from a continuous linear superposition of individual elementary relaxa-
tion responses to the external solicitation. Then the question of retriev-
ing the “Time Relaxation Distribution”makes sense and the RTD can be
related in turn to some petrophysical properties of interest as for in-
stance the pore or grain size distributions (see Schwarz, 1962; Pelton
et al., 1978; Tong et al., 2006; Revil and Florsch, 2010; Revil et al.,
2012, 2014). We will not discuss this point in detail in the present
paper. Instead, we will focus on the development of mathematical
tools to retrieve the RTD from the spectral induced polarization data.
In addition, we point out that this question of inverting the RTD from
time-domain or frequency domain spectra concerns various disciplines
in Earth sciences and physics including rock mechanics (e.g., Hilfer,
2002 on glasses or Revil et al., 2006 for the pressure solution of silica
sands).
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2. The question of resolution

The resolution of the solution of the inverse problem in spectral
induced polarization is often considered to be poor. This may explain
the reason why researchers often consider that only a set of few model
parameters of a given analytical model can be inverted (frequently the
Cole–Colemodel parameters). However, depending on hisfinal objective,
a geophysicist may probably find useful to actually have the choice in the
possible offered parameterizations of the inverse problem including
trying to invert the full RTD.

The low resolution in the inversion of the RTD is inherent to
the physics of the problem. In the case of a pure Debye relaxation
(which include a single time constant τ0 and the angular frequency ω),
the kernel is written as:

K ωð Þ ¼ 1
1þ iωτ0

: ð1Þ

The amplitude corresponds to a bell-shaped function given by:

K ωð Þj j ¼ 1
1þ iωτ0j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þω2τ20

s
: ð2Þ
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Fig. 1. Only the imaginary part leads to a clear peaks separation,
Then, K(ω)is a “Green function” or “impulse response” (actually in
the frequency domain) that must be convolved with a time relaxation
distribution as soon as this more elementary relaxation is admitted to
follow Debye’s model.

Resolving the RTD is not really different than resolving other geo-
physical anomalies (like in gravimetry, for instance) and the fundamen-
tal question regarding the resolution can be formulated as follows: how
differentmust be two constants τ1= τ0/χ and τ2= τ0 ⋅χ, withχ N 1, in
such a way that it becomes possible to resolve (to separate) these two
constants from a mixed spectrum like:

Fχ ωð Þ ¼ 1
1þ iωτ0=χ

þ 1
1þ iωτ0 � χ

: ð3Þ

When the peaks of the independent spectra are seriously overlap-
ping, only one peak seems visible. At this resolution limit, both first
and second derivatives vanish in the middle of the unique peak
(at axis of symmetry). However, in the general case here, and due to
the complex formof the responsewhichmakes the problem very differ-
ent from other classical power resolution problems like in gravity (for
instance), we showbelow that only the imaginary part owns two clearly
distinguishable peaks. Fig. 1 shows the spectrum in terms of amplitude,
phase, real and imaginary parts, in three cases: (1) under the resolution
(χ = 2, indicative value), (2) at the exact resolution (χ ≅ 2.41) (see
below), and (3) well resolved χ ¼

ffiffiffiffiffiffi
10

p
≅3:16 (indicative value).
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here with χ ¼ 2;1þ
ffiffiffi
2

p
;

ffiffiffiffiffiffi
10

p
(the last case is one decade).
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To look for the exact resolution, one solves:

dIχ ωð Þ
dω

¼ 0

d2Iχ ωð Þ
dω2 ¼ 0

;

8>><>>: ð4Þ

where Iχ(ω) denotes the imaginary part of Fχ(ω). After some calcula-
tions, one findsχ ¼ 1þ

ffiffiffi
2

p
≅2:41. The two peaks are separated by a fac-

tor in the frequency domain equal to the square of χ, which is the ratio:

r ¼ χ
1
χ

¼ 1þ
ffiffiffi
2

p� �2 ¼ 3þ 2
ffiffiffi
2

p
≅5:83: ð5Þ

The decimal logarithm difference, more important since it is

the quantity useful on distribution plots, is given by log10 rð Þ ¼ log10

3þ 2
ffiffiffi
2

p� �
≅0:766 . In practice, taking into account some noise and

two different amplitudes, it makes sense to consider that the resolution
is more or less one decade, that is r = 10 (and χ ¼

ffiffiffiffiffiffi
10

p
) and a log

difference of 1. Therefore, it appears that when attempting to retrieve
a continuous spectrum, it is not worth using a sampling higher than
four of five points per decade.

The next and more important point concerns the resolution limita-
tions in induced polarization, and the fact that inverting induced polar-
ization spectra belongs to the class of ill-posed problems in the sense of
Tikhonov.

3. Materials and method: inverting induced polarization data

Our main objective is to go a step further in inverting and resolving
induced polarization spectra in terms of retrieving the RDT and to pro-
vide an open source code to the community. This code includes two
novelties. The first is relative to the possibility of inverting RTDs based
on an inversion of the response using Green functions generalizing the
Debye decomposition and convolution form. In other words, our ap-
proach offers the possibility to project the spectrum on a generalized
Cole–Cole, a Warburg response, or actually any kernel response with
some adaptation. The second point is relative to the use of the L-curve,
which permits a fair control in the management of the damping factor,
which is required to invert an ill-posed problem. The use of the L-curve
allows having an optimum trade-off between accuracy and resolution.
There are some alternative schemes like the popular Akaike’s criteria
or cross-validation techniques. However, the use of the L-curve is
elegant and powerful and we recently used it successfully to invert
the IP data in the Fourier domain (Florsch et al., 2012).

A potential difficulty appearing in inverting SIP data is related to
the fact that the distribution of relaxation times needs to be positive-
definite. As far as a linear method is used, it occurs that the solution
involves some negative contributions, because the positivity is not
included as an a priori criterion in the formal mathematics. However,
imposing positivity can be done by introducing non-differentiable ob-
jective functions or by using a proper bijective and monotone change
of variable, like the one given by:

x0 ¼ 10x⇔x ¼ log10 x0
� �

; x∈ℝ; x0∈ℝ�
þ: ð6Þ

The constraint of positivity makes the problem non-linear. Note that
the linear method may yield solutions involving high oscillations
(where positive and negative parts compensates), despite the damping,
andmay lead to unrealistic solutions despite an excellent fit of the data.
A possibility to invert a non-linear problem is the Generalized Least-
Square approach (abbreviated as TVGLS hereinafter) proposed by
Tarantola and Valette (1982). It permits to deal with non-linear objec-
tive functions, which results from imposing positivity. A very suitable
change of variables, providing scale-invariance properties, is given by
Eq. (6) above. The TVGLS is a form of the Newton–Raphson algorithm,
and, as such, it requires an initial guess. The choice of the initial guess
is one of the factors determining the success of the inversion. If this
initial guess is too far from the (unknown) solution, then instability
may occur in the search of the solution depending on the topology of
the objective function (e.g., Fernandez-Martinez, 2012). Indeed, far
from the solution, the objective function can be flat or random-like,
making the steepest gradient approach hopeless. Making a good initial
choice is a critical step, and we propose a successful method described
further below.

3.1. The Generalized Least-Square approach (TVGLS) with positivity

A generalized linear admittance model including a normalized dis-
tribution gτ(τ)and additionally the so-called “high frequency dielectric
response” (HFDR) or “capacitive response” iωC (often effective in the
data over 1 kHz), leads to consider one of the general linear expressions
for impedance Z and admittance A spectrum as:

Zω ωð Þ ¼ aℜ þM
Z ∞

0
gτ τð Þφ ω; τð Þdτ; ð7Þ

or alternatively

Aω ωð Þ ¼ aℜ−M
Z ∞

0
gτ τð Þφ ω; τð Þdτ þ iωC: ð8Þ

In these expressions, aℜ is a real constant (generally speaking σ∞
when using admittance),M is a real constant indicative of the amplitude
of the IP proper phenomenon, gτ(τ) is the Relaxation Time Distribution
(RTD), φ(ω,τ) is the Kernel (for instance an elementary Debye
response), C is a constant having the dimension of a capacitance and
used to model the high frequency trend of the spectrum. Here the
RTD, g is normalized (∫0

∞gτ(τ)dτ = 1).
A discussion about the sign of the integral factor is useful. Here the

writing is chosen in such a way that we can assume that M N 0 in both
cases. Indeed, if we consider the following elementary model:

σ� ¼ σ∞ þ σ0−σ∞
1þ iωτ0

þ iωC: ð9Þ

which is a special case of Eq. (8) with:

aℜ ¼ σ∞
M ¼ − σ0−σ∞ð Þ≥0
gτ τð Þ ¼ δ τ0−τð Þ
φ ω; τð Þ ¼ 1= 1þ iωτð Þ

8>><>>: ð10Þ

This model is compatible with the fact that σ0 − σ∞ ≤ 0 and |σ*| ↗
when ω ↗.

Taking the inverse of the conductivity, the complex resistivity is
given by:

ρ� ¼ ρ∞ þ ρ0−ρ∞
1þ iωτ0

; ð11Þ

with:

aℜ ¼ ρ∞
M ¼ ρ0−ρ∞≥0
gτ τð Þ ¼ δ τ0−τð Þ
φ ω; τð Þ ¼ 1= 1þ iωτð Þ

;

8>><>>: ð12Þ

In terms of complex resistivity, this writing is compatible with fact
that ρ0 − ρ∞ ≥ 0 and |ρ*| ↘ when ω ↗.

Note that in Eq. (9), the presence of the dielectric term is additive to
the complex conductivity response assuming homogeneity. This choice
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is actually imposed by the form of Ampere’s law in which the dielectric
displacement current is added to the conduction current. Therefore, the
use of the following model for the complex resistivity:

ρ� ¼ ρ∞ þ ρ0−ρ∞
1þ iωτ0

þ iωC ð13Þ

would not be appropriate. Actually, in the presence of the HFDR,
complex resistivity data have just to be first converted into complex
conductivity data before being inverted in order to take advantage of
the additivity of the HFDR.

Although the HFDR or “capacitive response” has been addressed
recently by several authors (e.g., in Appendix 1 of Florsch et al., 2012),
its origin (and order of magnitude) is still controversial. A recent
advance can be found in Revil (2013). Although this paper involves
porous media, it applies as well in homogeneous pure and salted
water. In the following, we use in Eq. (8) the sign minus, that is we as-
sume that the data to be inverted are relative to complex conductivity
(or admittance) and we believe that this choice is actually dictated by
the underlying physics of the problem discussed in our previous papers
(e.g., Revil and Florsch, 2010).

3.1.1. Encapsulating M into gτ(τ)
In managing Eq. (7) or (8), one has to determine both the constant

M and the RTD g(τ) with the additional condition that gτ(τ) must be
normalized. This last condition could be undertaken by introducing an
additional Lagrange multiplier to ensure this condition is obeyed. It is
however simpler to encapsulate M into gτ(τ), that is to write the
model under the form (example with the minus sign):

Aω ωð Þ ¼ aℜ−
Z ∞

0
gτ τð Þφ ω; τð Þdτ þ iωC; ð14Þ

by dropping both M and the normalization. Using this formalism,
only gτ(τ) has to be retrieved, and will not be normalized. However,
it is trivial to recover the constant and the normalization condition
just by integrating gτ(τ) as a final step after the inversion of the
RTD. This writing (making M disappearing from the inverse prob-
lem) is the real reason why we distinguish the two signs. In the fol-
lowing, we consider that the multiplicative constant has been
therefore encapsulated in the RTD, and that a recovery of the true
distribution requires normalization.

3.1.2. Using the logarithmic change of variables
Weperform now the usual change of variables, which better accom-

modates the frequency (or time) scale invariance:

z ¼ − log ωð Þ⇔ω ¼ e−z

s ¼ log τð Þ⇔τ ¼ es
:

�
ð15Þ

This yields:

Az zð Þ ¼ aℜ−
Z ∞

−∞
Gs sð ÞΦ z; sð Þdsþ ie−zC; ð16Þ

Gs sð Þ ¼ τg τð Þ
Φ z; sð Þ ¼ φ e−z

; es
� � :�

ð17Þ

In most cases, φ(ω,τ)is multiplicative, that is φ(ω,τ) takes the
formφ(ω,τ) and thenΦ(z,s) can be rewritten asΦ(z− s). It is not an ab-
solute requirement. Actually using Φ(z, s) instead of Φ(z − s) is only
useful if the “system” as properties varying with time. If Eq. (16) can
be written as a convolution product and when excluding the dielectric
term, the kernel can be retrieved by using a Fourier technique (see
Florsch et al., 2012) or using classical fitting methods.
As an example, we consider the Havriliak–Negami (also called the
generalized Cole–Cole model, see Havriliak and Negami, 1966; Pelton
et al., 1983). This model is given by:

Hω ωð Þ ¼ aþ d
1þ iωτ0ð Þcð Þb ; ð18Þ

(with d b 0 for admittance). The theory above shows that one can find a
distribution relative to this model, of the form:

Hω ωð Þ ¼ a−
Z ∞

−∞
Gs sð ÞHz z−sð Þds: ð19Þ

In this model, if we set b = 1, one deals with the Cole–Cole model,
and then it can be written by applying the superposition principle
with a simple Debye kernel, through the integral:

Hω;b¼1 ωð Þ ¼ a−
Z ∞

−∞

Cz sð Þ
1þ ies−z ds; ð20Þ

where Cz(s) is the Cole–Cole distribution of relaxation time.
One may want to generalize this formalism based on Debey relaxa-

tion by opening to the possibility of fitting a spectrumwith a superposi-
tion of (for instance) Havriliak–Negamimodels, that is, by operating afit
of a distribution gτ(τ) in:

Hω ωð Þ ¼ aℜ−
Z ∞

0

gτ τð Þ
1þ iωτð Þcð Þb dτ: ð21Þ

In that case, the problem is not anymore to retrieve simultaneously b,
c and gτ(τ), but to retrieve gτ(τ) assuming b and c are known. Indeed,
some physical consideration may lead geophysicists to tackle with
such models. For instance one may want to decompose the data by
using a superimposition of Warburgs’ elementary responses instead of
using a superimposition based on the Debye model. The Warburg
model coincides with the Cole–Cole when c= 0.5 and b= 1. Although
ancient (Warburg, 1899), this model has renewed interest because it
permits tomodel properly the diffusion of ions in charge accumulations
(Revil et al., 2014; Wong, 1979).

Remember that taking into account an additive HFDR requires the ad-
mittance formalism. This term is not directly additive if working with im-
pedance, because the equivalent electrical circuitwould be the impedance
of two components in parallel, which are only harmonically additive. Ad-
ditionally, Florsch et al. (2012) showed that it is not possible to encapsu-
late the dielectric term into the integral kernel. In other words, there is
no bounded distributions that can be used to represent the dielectric term.

3.2. Inversion skeleton

The linear formalism, althoughwe dropped it, is useful as a reference
case, especially to arrange the covariance matrices and damping opera-
tors. Without loss of generality, the convolutive form is convenient for
discussion, and we consider first the following equation:

Az zð Þ ¼ aℜ−
Z ∞

−∞
Gs sð ÞΦ z−sð Þdsþ ie−zC: ð22Þ

To model the unknown function G, digitizing (sampling) it is the
simplest way (alternative method would for instance write G on a
basis of continuous functions). The integral is replaced by its corre-
sponding Riemann sum. For facility, one can split the spectrum into
real and imaginary parts (although most of the computer languages
allow the use of complex variables). Then we write Eq. (22) in the
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new following form (withND the number of data,NG the chosen number
of samples of G and Δs the integration step):

Aℜ
k ¼ aℜ−Δs

XNG

j¼1

Φℜ
kj Gj þ errℜk

Aℑ
k ¼ −Δs

XNG

j¼1

Φℑ
kjGj þ Ce−zk þ errℑk :

8>>>>><>>>>>:
ð23Þ

In this equation, Aω(ω) has been separated in real and imaginary
parts and irregularly sampled at the discrete frequencies ωk. We also
have: Gj = G(sj) and Φℜ

kj ¼ Re Φ zk−s j
� �� �

; Φℑ
kj ¼ Im Φ zk−s j

� �� �
with Re and Im for the real and imaginary parts, respectively. The
term (err) denotes the uncertainties in the measurements.

3.3. Setting the constant time range and exploration interval

ToGj=G(sj) corresponda set of sj=logτj. For convenience, oneuses
from here the logarithm in base 10. One must set a time range [τmin,τ-
max], a “working interval”, in which the unknown time distribution is
sought. It is clear that we must involve the frequency interval bound-
aries in which the function to be inverted (the data) is known. Let us
write [fmin,fmax] this interval. A suitable choice is, in log:

log10 τminð Þ ¼ − log10 2π fmaxð Þ−N1
log10 τmaxð Þ ¼ − log10 2π fminð Þ þ N2

:

�
ð24Þ

Actually we use, by experience, N1 = N2 = 0 but let us keep this no-
tation to recall that the relationship between the frequency range and
the time constant range is not absolute, and it is still useful in some
case to make them varying. Using positive values means that the time
range is greater than possibly derived from the frequency range. This
leads to end effects, for instance at low time constant, the response is
disturbed by the HFDR.

3.4. Setting the required matrices

The linear formalism remains useful to provide a first comprehen-
sive and classical frame to the inversion, and to set the notations.
To manage the linear inversion process, the system of equations
(Eq. (17)) is better put in a matrix form:

Px ¼ aþErr; ð25Þ

with:

ð26aÞ

x ¼

G1
G2
�
�

GNG

aℜ
C

0BBBBBBBB@

1CCCCCCCCA
; ð26bÞ
and:

ð26cÞ

A classical least-square (LS) solution of this set is:

x̂LS¼ PtC−1
dd P

� �−1
PtC−1

dd a; ð27Þ

where Cdd is the diagonal covariance matrix of the data, and Cdd−1 its in-
verse, namely:(28)

ð28Þ

3.5. Switching to the non-linear case

The system Eq. (23) or (25) is changed by setting that the unknown
is now the exponential, that is:

∀ j; Gj ¼ eG
0
j : ð29Þ

The system is now written with the unknown Gj′:

Aℜ
k ¼ aℜ−Δs

XNG

j¼1

Φℜ
kj � eG

0
j þ errℜk

Aℑ
k ¼ −Δs

XNG

j¼1

Φℑ
kj � eG

0
j þ Ce−zk þ errℑk :

8>>>>><>>>>>:
ð30Þ

This set of equations seems similar to Eq. (25), but is however
non-linear. One could be tempted to set ∀ j; Gj ¼ eG

0
j and then solve it

classically; but then we would give up positivity. Solving Eq. (25) and
solving Eq. (30) are actually radically different. The positivity constraint
is assured since even if some Gj′ are found to be negative, Gj ¼ eG

0
j is

always positive and never vanishes.
In the geophysical literature, the model vector is often noted m

(for model) or p (for parameter), while the data vector is d and the di-
rect problem uses the notation G, so the problem is written d = G(m)
(for instance in Menke, 1989). Here, m ¼ G0

1;G
0
2; ::::::G

0
nm

� �T
and d ¼

Aℜ
1 ;A

ℜ
2 ;……Aℜ

nd
;Aℑ

1 ;A
ℑ
2;……Aℑ

nd
;

� �T
and we use, d = Γ(m), where Γ is

here a non-linear function of the unknown vector m.
Turning back to the original least-square strategy (or formalism) is

certainly a good way when dealing with the non-linear case. It consists
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in posing the problem in terms of minimization of the weighted objec-
tive function, namely:

J0 mð Þ ¼ d−Γ mð Þð ÞtC−1
dd d−Γ mð Þð Þ ð31Þ

Basically, it is necessary, but not sufficient nor satisfactory in general
to get a minimum just solving ∇J0 ≡ 0. Actually, the set of solution
verifying this condition, if it permits to fit the data, can correspond to
unrealistic results (for instance, solutions showing huge oscillations).
It is necessary to include a damping add-on (or regularizer), which is
equivalent to introducing a priori knowledge on the solution. This is
essential to restrict the wide solution space verifying Eq. (31) to prag-
matic solutions, although not fully realistic (only a full Bayesian
approach can avoid this difficulty).

3.6. Stable inversion and setting the damping parameters and a priori

The solution of the “ill-posedproblem”, in Tikhonov’s sense (Tikhonov
and Arsenin, 1977) can be “regularized”, or “damped” and this is done, in
the frame of the optimization theory, by adding a damping (or penaliza-
tion) function to the initial objective (or “cost”, or “misfit”) function.

The new complete damped objective function is:

J mð Þ ¼ J0 mð Þ þ J1 mð Þ; ð32Þ

that is, we aim to minimize J instead of J0 only. One of the simplest
choices to stabilize the solution is just taking a minimum norm
regularizer:

J1 mð Þ ¼ λ2 m−mprior
��� ���2: ð33Þ

It is obvious that if λ is very small, the optimum will not change
significantly, while if λ is big, J1 is no more negligible with respect to J0
and will attract the solution toward a given a priori parameter vector
mprior to minimize ‖m − mprior‖2. (Squaring λ is just a writing to have
this coefficient positive.)

In the followingwe use a more complex damping operator, namely:

J1 Gð Þ ¼ λ2 XNg−1

k¼1

G0
kþ1−G0

k

� �2þα2 aℜ−aprior
� �2 þ β2C2

: ð34Þ
L-curve for Tikhonov regularization
(from Hansen, 1992)
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Fig. 2. Ideal L-curve valid in the linear case, and rotation of it, making the optimu
When acting on λ we purely smooth more or less the solution,
limiting the norm of its second derivative. Finally, α and β permit to
limit the excursion of (aℜ − aprior) and C, respectively, if wished.

Choosing the best damping parameters {λopt,αopt,βopt} can be amat-
ter of trial-and-error and experience. It is problem-dependent, and, for a
given problem, data dependent. It is always a question of trade-off,
which must be adjusted at the end partially “by hand”. When chosen
too small, the solution is unstable. When chosen too big, the solution
leads to unsatisfactory fittings and the solution is flattened to zero. Be-
cause it is dependent on the choice of the operator, it is also a subjective
part of the inversion, or, equivalently, the prior information embedded
into the inversion scheme by the operator itself.

Most of the time the solution is satisfactory by usingα= β=0. But
if we expect that, for instance, the end of the spectrum is likely not due
to a HFDR, then one may set β to a large value in order to limit the
excursion of C, or just because we would like to cancel this term in the
model. Finally, the main smoothing coefficient is λ. A very suitable
method to set it is the so-called method of the L-curve. The L-curve
method has been used successfully by Florsch et al. (2012) to invert
RTD by using Fourier transform, and is detailed in Argaval (2003) and
Hansen and O’Leary (1993).

3.7. The L-curve

The L-curve is the curve obtained by plotting the solution modulus

‖Gλ‖ depending on λ2versus the misfit Aobserved ωð Þ−eAλ ωð Þ
��� ��� , when

thedampingparameter (hereλ2) is varying fromahigh value—typically
106 in our experience (this flattens the solution, that is ‖Gλ‖ → 0) to
a small value, like 10−2 (this lets the solution to be unstable where
‖Gλ‖ → ∞). To run the method it is safe to prevent from overflow or
underflow that may break the computation (i.e., the run of the algo-
rithm should continue even if underflows and overflows occur).
Numerical overflow may lead ‖Gλ‖ to be huge and unstable, and this
happenswhen the solution is not dumped enough. Actually, this occurs
because one benefit from exploring a λ range as wide as possible, to
facilitate the L-curve corner location, where the damping is optimal.

To detect this optimal point, as depicted on Fig. 2, we use the follow-
ing trick: the corner becomes the minimum of the curve once the latter
has been rotated by and angle α counterclock-wise.

This procedure proves efficientmost of timewhileα⊂ [45°,80°], but
sometimes it can be tricky to find the ”good” rotation, and in the exam-
ple we show in this paper, we had to take one time α= 91°. However,
Minimim
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m damping parameter easily and automatically determined as a minimum.
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this angle is the only parameter “managed by hand”, and the fact that
the code fails for a representative value of saying α = 50°may result
from a L-curve badly shaped. The reason why the L-curve may be
shaped very differently than in the paper by Hansen and O’Leary
(1993) is a consequence of the non-linearity. For a linear problem,
there is a unique solution (or a “valley” solution if not damped, but ap-
plying the L-curvemakes the solution unique). That is, for a linear prob-
lem, the objective function is quadratic, a perfect paraboloid in N
dimensions (N being the number of unknowns). Then, in the linear
case, the L-curve looks really like an “L”. In the non linear case (due
here to the positivity constraint we demand), local minimum emerges
(see for instance Fernández-Martínez et al., 2012), making the choice
of the optimumpoint on the L-curve trickier. In such a case, it is benefit-
ing to check the data more in detail to see whether they are coherent or
notwith the kernelmodel, orwhether the signal has not been disturbed
by non IP contributions (like 50 or 60 Hz EM radiation, or low frequency
electrode drifts).

3.8. Notice on possible correlation between aℜ and C withgτ(τ)

The parameter aℜ is necessary in the formalism, and sometimes C is
required (generally speaking when the range includes frequencies
greater than 1 kHz) but both may be correlated with something of
gτ(τ). Let us for instance consider, a decomposition on a basis of gener-
alized Cole–Cole (or Havriliak–Negami) model and let us examine the
two ends of the frequency range.

We have first:

Aω ωð Þjω¼0 ¼ aℜ−
Z ∞

0

gτ τð Þ
1þ iωτð Þcð Þb dτ þ iωC

" #
ω¼0

⇒Aω 0ð Þ

¼ aℜ−
Z ∞

0
gτ τð Þdτ: ð35Þ

Clearly, a trade-off does exist between aℜ and the integral∫0
∞gτ(τ)dτ,

coming from this coupling at low frequency. It is partial, since thewhole
frequency interval influences gτ(τ).

Let us go a little bit further by expanding Aω(ω) close toω=0. Since
the distribution gτ(τ) cannot be explored over the whole time domain
in practice, and especially not for very large time constant (because it
will make themeasurement duration prohibitive), we have no scruples
in assuming that:

∃Tjgτ τð Þ ¼ 0 if τ≥T: ð36Þ

(In other terms: even if itmay be physically unlikely, but anywaywe
cannot reach the corresponding time constant domain).

Then we can consider the frequency domain where ω is small
enough to have ωτ ≤ ωT ≪ 1, (that is ω ≪ 1/T) and we can write at
the first order:

Aω ωð Þ ¼ aℝ−
Z T

0

gτ τð Þ
1þ iωτð Þcð Þb dτ þ iωC≅aℝ−

Z T

0
gτ τð Þ 1− iωτð Þcb

h i
dτ þ iωC

ð37Þ

Introducing the moment (limited to T) of non integer order γ by:

mγ ¼
Z T

0
τγgτ τð Þdτ ð38Þ

We can now write:

Aω ωð Þ ωT≪1≃aℝ−m0− iωð Þcbmcb þ iωC:
			 ð39Þ
Separating real and imaginary parts in this equation leads to:

Aω ωð Þ ωT≪1≃ aℝ−m0−mcbω
cb cos

πcb
2


 �� 
þ i −mcbω

cb sin
πcb
2


 �
þωC

� 
:

				
ð40Þ

In the case of the simple Debye, we have:

Aω ωð Þ ωT≪1≃ aℝ−m0ð Þ þ iω −m1 þ Cð Þj ð41Þ

Generally speaking, theHFDR is only seen at the high frequency end,
generally over 100 Hz or even 1000 Hz. Then it is likely that |m1| N |C|,
while this is not resulting from mathematics, but experimentation.
Then it can even be simplified to:

Aω ωð Þ ωT≪1≃ aℝ−m0ð Þ−iωm1j ð42Þ

This equation shows the content of the left, low-frequency, end of
the spectrum.

At the opposite of the spectrum (at high frequency) the response is
not bounded:

Aω ωð Þjω→þ∞ ¼ aℜ−
Z ∞

0

gτ τð Þ
1þ iωτð Þcð Þb dτ þ iωC

" #
ω→þ∞

≈aℜ þ iωC: ð43Þ

It results in:

lim
ω→∞

Re Aω ωð Þ½ �≡ aℜ

lim
ω→∞

Im
Aω ωð Þ
ω

� 
≡ C or lim

ω→∞
Im Aω ωð Þð Þ½ �ω 0 ¼ C

:

8><>: ð44Þ

This can be used to obtain first insights on the parameters (however
the full determination requires the full inversion), or it can be advanta-
geously be used as a priori values for aℜ and C. Additionally we notice
that since the time distribution appears no more in these equations, it
results that the decoupling of aℜ and Cwith respect to gτ(τ) is “provid-
ed” thanks to the upper part of the spectrum. In other words, the high
frequency content brings almost no information to assess gτ(τ): it is
dominated by these two constant contributions, aℜ for the real part,
and C for the imaginary one.

3.9. Initial guess and priors

It is useful and often necessary to launch the inversion from a realis-
tic initial estimation, and in the TVGLS (Tanrantola and Valette General-
ized Least Squares), the initial guess is also the prior. The result just
above can be used, but provides no insight about the RTD. Then our
computation consists in beginning the optimization by departing the
iteration scheme from an initial guess relative to what we call below
the “homogeneous case”.

This homogeneous case corresponds to a model in which the distri-
bution is assumed to be constant on a given interval, that is:

Gs sð Þ ¼ τgτ τð Þ ¼ constant ¼ G0 ð45Þ

over the given interval τ ∈[Tmin,Tmax].
It results that gτ τð Þ ¼ G0

τ and it follows a model of the form:

σ� ¼ σ∞−
Z Tmax

Tmin

1
τ

G0

1þ iωτð Þdτ þ iCω: ð46Þ

It is worthwhile to notice that the distribution gτ(τ) = G0/τ is the
one involved in the notion of « Jeffrey » parameters, what Tarantola
and Valette (1982) named initially the “null information” and later the
“homogeneous probability measure” (Tarantola, 2005).
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Eq. (46) can be easily integrated. It is also given, for instance, by
Barsoukov and MacDonald, (2005, pp. 38–39). We write here the solu-
tion in the following explicit form with real and imaginary parts sepa-
rated:

R ωð Þ ¼ σ∞−G1 log
Tmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þω2T2
max

q
0B@

1CA− log
Tminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þω2T2
min

q
0B@

1CA
264

375
I ωð Þ ¼ −G1 tan−1 ωTminð Þ− tan−1 ωTmaxð Þ

h i
þ iCω

:

8>>>><>>>>: ð47Þ

For the support time interval, we use the simple choice:

WT ¼ Tmin; Tmax½ � ¼ 1
2π fmax

;
1

2π fmin

� 
: ð48Þ

Replacing angular velocities by the sampled values at discrete
frequencies, Eq. (47) leads to a system of linear equations with robust
unknowns {σ∞G1,C} which can be solved by a classical least-square
approach. In the inversion code, the solution is taken as initial and
prior values, and especially the unknowns relative to the RTD to be
inverted are set to the constant G0. The little code required to get this
initial model by inversion is a part of our code, used just before the
launch of the main inversion procedure.

3.10. The damping and its connection with a priori covariance matrix

The Bayesian approach offers a very general background to inversion
philosophy. In this framework, regularizationmethods are visited with-
in the probabilistic theory by considering equivalent model a priori
probability density function (or probability measures if not normaliz-
able). The books by Tarantola (2005) and Menke (1989) both provide
a complete and useful background for any reader interested in deepen-
ing the inverse problem methods. A demonstrative application of the
Bayesian approach as applied to IP can be found in Ghorbani et al.
(2007) in which this approach was applied to the Cole–Cole model.

Assuming the data errors are Gaussian, the Bayesian approach leads
to consider the following probability density function, (with m0 an a
priori on the model vector m, which also plays the role of an attractor
for m toward m0):

pdf mð Þ ¼ K exp −1
2

d−Γ mð Þð ÞtC−1
dd d−Γ mð Þð Þ þ m−m0ð ÞtC−1

mm m−m0ð Þ
� �h i� �

:

ð49Þ

Looking for themaximum of the pdf is then equivalent with looking
to the least-square solution by identifying (see Eqs. (32), (33) and
(34)):

J1 ≡ m−m0ð ÞtC−1
mm m−m0ð Þ: ð50Þ

The problem is then to minimize:

J ¼ J0 þ J1 ≡ d−Γ mð Þð ÞtC−1
dd d−Γ mð Þð Þ þ m−m0ð ÞtC−1

mm m−m0ð Þ: ð51Þ

In correspondence with the term of Eq. (33), the damping contribu-
tion takes the more complete form:

J1 Gð Þ ¼ λ2 XNg−1

k¼1

G0
kþ1−G0

k

� �2þα2 aℜ−aprior
� �2 þ β2C2

: ð52Þ

Here, the inverse of the new covariance matrix relative to themodel
is:

C−1
mm ¼ λ2W1 þ α2W2 þ β2W3; ð53Þ
with:

ð54aÞ

ð54bÞ

and

ð54cÞ

3.11. Posterior uncertainty assessment

We state below that for the class of problemwe are dealing with,
the uncertainty estimates are not meaningful when damping is
used. Generally speaking, when performing an inversion, it is gener-
ally useful (sometimes mandatory) to provide uncertainties and
error bars for the solutions. Within the linear inversion framework
(which can be used in the non linear case as well), the information
associated with the data is given by the posterior covariance matrix,
the data resolution matrix, and the model resolution matrix (Menke
1989).

The posterior covariance matrix is nothing but the resulting uncer-
tainties of the inverted parameters and the “correlation” between
them. It is symmetrical. The diagonal of the matrix is directly related
to the variance of the model parameters.

However and despite a linear formalism (extendable to the non-lin-
ear case), our conviction is that estimating the final uncertainties can be
strongly misleading. For simplicity, we discuss the linear case, in which
the L-curve looks like a L. It is easy to understand what happens when
considering the vertical branch of the L-curve (before rotation). Within
the vertical branch, the fit is reached and fully satisfactory in the data
space. However, it corresponds to unstable solutions, even divergent.
Mathematically speaking, those solutions are possible and even good-
looking in terms of data fit. Then they should be taken into account in
the estimator standard deviation. Thismakes nonsense, because satisfy-
ing solution (in terms of fit) may be definitely huge: then uncertainty
assessment is not relevant. Moreover, if we consider the optimum
point, the formal error is depending on the value of the damping
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Fig. 3. Synthetic case. The RTD is made of two Dirac and one Warburg distributions. An HF dielectric term is added to the spectrum, shown in both Bode and Nyquist diagrams.
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parameter, more than on the data themselves. Hence, we believe that
providing the posteriori covariance matrix is not relevant because of
its dependence on the damping parameter. Posteriori statistics is only
significant if no damping is required. Onemust therefore be very careful
regarding uncertainties estimates when dealing with ill-posed
problems.
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3.12. Tarantola–Valette Generalized Least-square inversion scheme

Eq. (23) (or 24 or 25) from Tarantola and Valette's (1982)paper is
easy to implement and provides an iterative scheme with Newton–
Raphson convergence properties. More precisely, the iterations are
performed for a given fixed L-curve parameter (λ2). That said, in an
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external additional loop, (λ2) is swept along within an interval
λ1;…;λ2; ::::λNλ

� �
, browsing a given logarithmically-sampled interval.

4. Application to the Pore Size Distribution (PSD)

A general relationship between the relaxation time and a polariza-
tion length scale (generally the particle size) is consistent with many
published works since the seminal work on particle size by Schwarz
(1962). Recently, this idea has been generalized by Revil et al. (2012,
2014) to pore throat size distributions. This relationship connects the
relaxation time constant to a representative size of the entity carrying
the polarization process and called the polarization length scale. The
general relationship has the form:

τ ¼ r2

kD
; ð55Þ

where r denotes a characteristic size (like pore throat size or particle
radius), k is a constant (e.g., k = 2 in the work of Schwarz, 1962), and
D is the diffusion coefficient of the charge carriers.

It results in a linear relationship between the logarithms of r and τ
which makes easy the transformation of the respective distributions.
The distribution shape is therefore invariant, just involving a translation
along the x-axis (depending on a factor K= kD) and a scaling factor 1/2.
Then, the GSD (for Grain Size Distribution) or the PSD (for Pore Size
Distribution) are similar to the RTD (Relaxation Size Distribution), just
by changing the x-axis linear graduation.
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Fig. 6. Fit of the synthetic model with a Havriliak–Negami (or Generalized Cole–Cole with the p
provides better results than fitting on a Warburg basis. The L-curve displays a random-like beh
5. Results: inversion code call and examples

The code available as a supplementary file is written in Matlab and
the call uses and syntax are detailed in the Appendix A.

To illustrate the code, we apply these equations to one synthetic and
two different cases of real data sets. Here we use three projection
bases: i) Debye (c = b = 1), ii) Warburg (equivalent to a Cole–Cole
with c = 0.5, b = 1) and iii) generalized Cole–Cole, with c = 1
and b= 0.5, which is also a special case of the Davidson–Cole model. Of
course any desirable c and bmay be used, within the range ]0,1]×]0,1].

5.1. A synthetic (noisy) example

We first propose a syntheticmodel built with a sumof twoDirac dis-
tributions and aWarburg distribution. Actuallywe approximate the two
Dirac distributions by using a Cole–Cole with c1 = c3 = 0.999, and
theWarburg is nothingbut a Cole–Colewith c2=0.5. The twoDirac dis-
tributions are set at periods of τ1=1s; τ3=1ms, while theWarburg has
a central period at τ2 = 10 ms. All models have an amplitude of A1 =
A2= A3 = 0.01 (arbitrary units since it is synthetic), the level of random
Gaussian noise standard deviation has been set at 10−5 with 0 mean,
noted n(0,10−5). Finally, the HFDE is made up from a equivalent capaci-
tance of 0.1 μF(C = 10−7) and the additional term is a = 0.3. Then the
synthetic model is shown on Fig. 3, and corresponds to the formula:

S ωð Þ ¼ aþ
X3
k¼1

Ak

1þ iωτkð Þck þ iωC þ n 0;10−5
� �

: ð56Þ
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2 3 4 5 6 7 8

x 10-3

3

4

5

6

7

8

9

10

11
x 10-4 Nyquist diagram

real part (Siemens)

im
ag

in
ar

y 
pa

rt
 (

S
ie

m
en

s)

data

model

model without HFDT

10
-4

10
-2

10
0

10
2

0

0.5

1

1.5

2

2.5

3
x 10-3 Relaxation Time Distribution

time constant (s)

R
T

D
Relaxation Time Distribution

10-5 10-4 10-3 10-2
10-4

10-3

10-2

10-1

norm of the residuals

no
rm

 o
f t

he
 s

ol
ut

io
n

L-curve, and final choice (O)

L-curve

final choice
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The distribution relative to a Cole–Cole model with a time constant
τ0 and an exponent c is given by (Cole and Cole, 1941):

g τð Þ ¼ 1
2πτ

sin 1−cð Þπ
cosh c log

τ
τ0


 �� 
− cos 1−cÞπð Þ

; ð57Þ

Then the analytical RTD to recover is just the sum of three functions
of that kind with proper time constants, c constants and corresponding
amplitudes, as defined above.

We provide three inversion cases, with the inversion using projec-
tion on three kinds of distributions:

1) on a Debye basis (c = b = 1 in Eq. (21)). See Fig. 4.
The call command used here is:
RTDINV('DWD.dat', 'RTD.dat','FIT.dat',0,1,1,50,4e-12,0,0,2,4,100,
89,1,1,0,12)
The recovery of the RTD is rather good, and the high frequency term
correctly decoupled. As explained in the text, the L-curve ideal shape
is lost due to the non linearity, but the optimum point is very well
defined. Looking in detail, the Dirac distributions are not so accurate
than in the synthetics, but it is not surprising when considering the
resolution. At the contrary, the Warburg impedance contribution
seems to be sharper than in the reality.

2) on a Warburg basis (c = 0.5; b = 1). See Fig. 5.
Knowing the solution, we can expect that the solution of the inverse
problem will have some problems since it is not possible to project
Dirac distributions on the continuous Warburg function. That said,
of course, in real life, we possibly do not have such a prior knowledge
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Fig. 8. Inversion of real data set from Aulus (Florsch et al., 2011) by using a Debye basis (see Fig
candidate point on the L-curve, and get smoother RTD, despite a bad fit at the low frequency e
of the solution. Without surprise, the fit is bad; no RTD based on
Warburg response may accommodate Dirac distributions. This ex-
ample shows that before performing the inversion, themodel should
be realistic.
Command is:

RTDINV('DWD.dat', 'RTD.dat','FIT.dat',0,0.5,1, 50,4e-12,0,0,2,4,100,
89,1,1,0,12)

3) on a Havriliak–Negami (or Generalized Cole–Cole), with the particu-
lar case (c = 1: b = 0.5). See Fig. 6.
We try to fit the synthetic spectrum by projecting over a Havriliak–
Negamifunction basis. This is also supposed no to be good and in-
deed the results are poor (while not as poor as in the Warburg
case). Only the two Dirac distributions are seen, and the fit is not
as good as in the Dirac basis case.
Command:

RTDINV('DWD.dat', 'RTD.dat','FIT.dat', 0,1,0.5, 50,4e-12,0,0,2,4,100,
89,1,1,0,12)

One first conclusion that we can draw from this synthetics example
is that the L-curve shapemay contribute as good index to qualify the rel-
evancy of the chosen model.

5.2. Example 2: data from archaeological slags

It is taken from iron slags that have been studied at an archaeological
campaign (Florsch et al., 2011). The response of the concentrated slags
is quite similar but stronger than the data acquired on the field (see
Fig. 7 in the cited paper). The first inversion we propose is computed
by using θ=85°when rotating the L-curve. Results are shown on Fig. 7.
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. 7 for a comparison with another optimum point on the L-curve). Here, we reach another
nd of the data.
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Fig. 9. Inversion of real data set fromAulus (Florsch et al., 2011), by using aWarburg basis, to be compared to Figs. 7 and 8. The shape of the L-curvemakes the inversion reliable, while the
results show that a single Warburg function would have been suitable to invert this data set since the deconvolved solution is close to a Dirac distribution.
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Although the fit is excellent, the solution is oscillating and
nonphysically realistic. In this case, the command is:

RTDINV('PYR.dat', 'RTD.dat','FIT.dat',1,1,1, 50,4e-12,0,0,3,4,100,85,
1,1,0,12)

Thenwewished to reach the less optimal L-curvewhich can be seen
on the L-curve, as plotted on Fig. 8. To get this result, we set θ=45°,
using the command line:

RTDINV('PYR.dat', 'RTD.dat','FIT.dat',1,1,1, 50,4e-12,0,0,3,4,100,45,
1,1,0,12)

The fit is less efficient in the previous case, especially at the low
frequency limit. However, the solution is smoother. The lower end of
the spectrum is not adjusted by the model, and actually both ends are
questionable.

Let us consider now the use of aWarburg basis. Before inverting the
data, we observe that the solution obtained on theDebye basis leads to a
very smooth solution. Since Warburg function is much more spread
than Debye function, we expect obtaining better results. The command
is here:

RTDINV('PYR.dat', 'RTD.dat','FIT.dat',1,0.5,1, 50,4e-12,0,0,3,4,100,85,
1,1,0,12)

The solution shows that we were right (Fig. 9). The L-curve first is
non ambiguous, making the geophysicist to be more confident with
the inversion result. The data arewell fitted, except possibly, like before,
at the very lower frequencies (0.01 Hz). Apart the effects at the two
ends, one main peak and one secondary peak are clearly defined, close
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Fig. 10. Inversion of real data set relative to a mudst
to 0.1 and 0.001 s respectively. At least the biggest one is significant,
but the more remarkable here is that the data can be finely fit on a
Warburg decompositionmodel, compatible with the so-called “electrode
polarization” generally encountered with particle showing electronic
conductivity. The fact is that the field results and some analysis make
the magnetite the main candidate that may originate this signal.

5.3. Example 3: a mudstone from Wyoming

The sample is a mudstone originated from the Great Divide Basin in
Wyoming, USA. Its permeability is only 1 mD (equivalently 10−15 m2).
BothNyquist andBode diagrams reveal outliners in the lower part of the
spectrum. As previously, it appears below 1/100 Hz, and may indicate
that the governing physic we assume here is not relevant, or at list
not dominant below this spectrum. Taking into account the relative
duration, that is more that 1 or 2 min, it could be linked with a long-
distance drift of bulk ions. We do not develop here this phenomenon
but just concentrate to the inversion. Then, to prevent spurious effects,
we weighted the low part of the spectrum in such a way the corre-
sponding parts do not impact the inversion.

An inversion by using Debye decomposition, as shown on Fig. 10,
leads to quite satisfying fits. However, choosing the L-curve optimum
is clearly problematic.We used an angle of 91°. If we had used a smaller
angle (90° for instance), it is the lower point that would have been
targeted, with still a good fit, but a totally flattened RTD.

The command is here:

RTDINV('439-1.dat', 'RTD.dat','FIT.dat',1,1,1, 50,4e-12,0,0,5,4,100,91,
1,1,0,12)
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Fig. 11. The same as that in Fig. 10, but assuming a Warburg decomposition basis.
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These data however can be fit smarter by using a Warburg basis
(Fig. 11). The difficulty inherent to the L-curve optimum choice is still
here, but the residual cost is the same, around 6.10−4, and the angle
used here is 90°, relatively to the command line:

RTDINV('439-1.dat','RTD.dat','FIT.dat',1,0.5,1, 50,4e-12,0,0,5,4,100,
91,1,1,0,12)

6. Conclusion

In induced polarization problems, the Green function of the problem
is not always aDebyemodel and therefore spectral induced polarization
spectra with Debye function to recover the distribution of relaxation
time can bemisleading. We offered in this paper a more general frame-
work inwhich the operator can chose theGreen function of the problem
(base on underlying physics) and decompose the spectral induced po-
larization spectra using this Green function (e.g., a Warburg model).
When inverting data and especially in the case of such ill-posed prob-
lems, the prior information is strongly involved in the solution, making
the process depending on the operator, This makes the results shown in
this paper depending on the strategy used, which include the following
choices: (1) The mathematical model (Green function formalism with
superposition principle), (2) The integration is made by using
Riemann’s summation, (3) A “High Frequency Dielectric Term” (HFDT)
is included (but can be droppedwhen running the program), (4) The so-
lution is seek in a given interval, and the operator decides what must be
the range of the RTD involved, (5) The L-curve is used to provide an opti-
mum damping parameter.

Hence the geophysicist may use and modify that Matlab program
given as supplementary file (with data sets too) to get a better harmony
with his expectation, but should never forget how the results depend
strongly on our previous knowledge and overall prior knowledge. The
use of the L-curve, associated with the Tarantola and Valette General-
ized Least-Square, is one suitable method among other inversion
methods, and leads to solution that are generally satisfying. However,
it remains difficult to estimate uncertainties, and actually, the choice
of the inversion method is more determinant on the solution than any
method to propagate the uncertainties from the data space to the
parameter space.
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Appendix A. Inversion call syntax and format

The code is called by a Matlab command. It is open source and may
be used, improved and distributed on a free basis.

The syntax of the command is given as follows:

RTDINV(name1,name2,name3,lecture_code,c,b,k,D,const_eps,
const_a,L_CENTRAL, L_RANGE,teta,factor,Ll,ifig,size)

Parameters are described here below.

• Name1 is a string giving thenameof the datafile to be processed (only
numeric data)

• Name2 is a string giving the name of the file devoted to RTD or SIZE
DISTRIB

• Name 3 is a string giving the name of the file devoted to the fitted spec-
tra (amp, phase(mrad))

• lecture_code determine the reading format, with two choices:
○ if lecture=0, the format is

Freq(Hz), real_part (S/m), imaginary_part(S/m), err_real(S/m),
err_imag(S/m)
(notation are straightforward, notice that all data concern conduc-
tivity and not resistivity)

○ if lecture = 1, the format is
Freq(Hz), amp (S/m), phase(mrad), err_amp(S/m),
err_phase(mrad)

• c is the Cole–Cole exponent
• b is the exponent in the generalized Cole–Cole term (1 + iωτc)b

• const_eps is a damping parameter for the HFDT (β2in Eq. (34))
• const_a is a damping parameter for the additive constant (α2in Eq. (34))
• L_CENTRAL is the logarithm of the central value λ2around which λ2 is
swept

• L_RANGE is the half of the range regarding λ2, that is: log10λ2 rusn
through the interval:

L CENTRAL−L RANGE ; L CENTRAL þ L RANGE½ �ð

• theta is the angle of rotation (in deg) in the L-curve diagram, to which
the L-curve is rotated to facilitate the determination of the optimum λ2

• factor is a multiplicative factor that may be applied to the errors. It
equals 1 in general, but if we suspect the error to be unrealistically too
small (example: only formal errors are given, but systematic noise is
known to be present), then one can set factor N 1.

• Ll is 0 or 1 and permits to choose to plot the L-curve on log-log or lin-lin
• ifig is 0, 1 or 2. This parameter is relative to three levels when plotting
results. Level 0 is the basic graphics (identical to those given in this
paper), 1 is intermediate and 2 providesmore figures (including formal
covariance).

• size determines the size of the labels used in the output figures
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jappgeo.2014.07.013.
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