Tag Archives: Hydrogéophysique

Presentation of a Complex Permittivity-Meter with Applications for Sensing the Moisture and Salinity of a Porous Media

Papers - Publications scientifiques

This paper describes a sensor dedicated to measuring the vertical profile of the complex permittivity and the temperature of any medium in which sensor electrodes are inserted. Potential applications are the estimate of the humidity and salinity in a porous medium, such as a soil. It consists of vertically-stacked capacitors along two conductive parallel cylinders of 5 cm in diameter and at a 10-cm […]

Read more

Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull and single-hole ground penetrating radar experiments

The in situ characterization of transport processes in fractured media is particularly challenging due to the considerable spatial uncertainty on tracer pathways and dominant controlling processes, such as dispersion, channeling, trapping, matrix diffusion, ambient and density driven flows. We attempted to reduce this uncertainty by coupling push-pull tracer experiments with single-hole ground penetrating radar (GPR) time-lapse imaging. The experiments involved different injection fractures, chaser […]

Read more

Active-Distributed Temperature Sensing to continuously quantify vertical flow in boreholes

We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment […]

Read more

Detecting different water table levels in a shallow aquifer with combined P-, surface and SH-wave surveys: Insights from VP/VS or Poisson’s ratios

When applied to hydrogeology, seismicmethods are generally confined to the characterisation of aquifer geometry. The joint study of pressure- (P) and shear- (S) wave velocities (VP and VS) can provide supplementary information and improve the understanding of aquifer systems. This approach is proposed here with the estimation of VP/VS ratios in a stratified aquifer system characterised by tabular layers, well-delineated […]

Read more

Inversion of generalized relaxation time distributions with optimized damping parameter

Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole–Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by […]

Read more

2D characterization of near-surface VP/VS: surface-wave dispersion inversion versus refraction tomography

The joint study of pressure (P-) and shear (S-) wave velocities (VP and VS), as well as their ratio (VP/VS), has been used for many years at large scales but remains marginal in near-surface applications. For these applications, VP and VS are generally retrieved with seismic refraction tomography combining P and SH (shear-horizontal) waves, thus requiring two separate acquisitions. Surface-wave […]

Read more

Contribution of the finite volume point dilution method for measurement of groundwater fluxes in a fractured aquifer

Measurement of groundwater fluxes is the basis of all hydrogeological study, from hydraulic characterization to the most advanced reactive transport modeling. Usual groundwater flux estimation with Darcy’s law may lead to cumulated errors on spatial variability, especially in fractured aquifers where local direct measurement of groundwater fluxes becomes necessary. In the present study, both classical point dilution method (PDM) and […]

Read more

ENIGMA Innovative Training Network: 15 thèses à pourvoir

Le projet d’ITN ENIGMA (European training Network for in situ imaGing of dynaMic processes in heterogeneous subsurfAce environments) vise à former une nouvelle génération de chercheurs sur le développement de méthodes innovantes d’imagerie pour mieux contraindre les processus dynamiques dans les systèmes hydrologiques de subsurface, d’améliorer le caractère prédictif des modèles et de transférer ces innovations à la sphère socio-économique. […]

Read more

Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

Papers - Publications scientifiques

Fractured aquifers which bear valuable water resources are often difficult to characterize  with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical […]

Read more

Contribution of Magnetic Resonance Soundings for characterizing water storage in the unsaturated zone of karst aquifers

Understanding the role of the unsaturated zone in aquifer recharge and contaminant attenuation processes is a major challenge for the protection and management of karstic water resources. We present the potential of the MRS (Magnetic Resonance Soundings) geophysical method for characterizing the vadose zone of karst aquifers composed of epikarst and infiltration layers. To investigate the hydraulic functioning of the Durzon karst system located […]

Read more
1 2 3